Tìm nghiệm nguyên của phương trình

     

Hướng dẫn, cách giải phương trình nghiệm nguyên qua một vài ví dụ. Phương pháp: chẵn lẻ, phân tích, rất hạn, các loại trừ, phân tách hết, lùi vô hạn,bất đẳng thức.

Tùy từng bài tập mà những em vận dụng một xuất xắc nhiều phương pháp để giải câu hỏi phương trình nghiệm nguyên.




Bạn đang xem: Tìm nghiệm nguyên của phương trình

I. Phương thức 1 : thực hiện tính chẵn lẻ

Ví dụ 1: search x, y yếu tắc thoả mãn

y2 – 2x2 = 1

Hướng dẫn:

Ta có y2 – 2x2 = 1 ⇒ y2 = 2x2 +1 ⇒ y là số lẻ

Đặt y = 2k + 1 (với k nguyên).Ta tất cả (2k + 1)2 = 2x2 + 1

⇔ x2 = 2 k2 + 2k ⇒ x chẵn , cơ mà x nguyên tố ⇒ x = 2, y = 3

Ví dụ 2: kiếm tìm nghiệm nguyên dương của phương trình

(2x + 5y + 1)(2|x| + y + x2  + x) = 105

 Hướng dẫn:

Ta có: (2x + 5y + 1)(2|x| + y + x2  + x) = 105

Ta thấy 105 lẻ ⇒ 2x + 5y + 1 lẻ ⇒ 5y chẵn ⇒ y chẵn

2|x| + y + x2  + x = 2|x| + y + x(x+ 1) lẻ

có x(x+ 1) chẵn, y chẵn ⇒ 2|x|  lẻ ⇒ 2|x| = 1 ⇒ x = 0

Thay x = 0 vào phương trình ta được

(5y + 1) ( y + 1) = 105 ⇔ 5y2 + 6y – 104 = 0

⇒ y = 4 hoặc y = $ displaystyle -frac265$ ( loại)

Thử lại ta gồm x = 0; y = 4 là nghiệm của phương trình

II.

Xem thêm: Gia Đình Tiếng Anh Là Gì - Từ Vựng Tiếng Anh Theo Chủ Đề: Gia Đình


Xem thêm: Một Năm Nhuận Có Bao Nhiêu Ngày ? Những Bí Mật Từ Năm Nhuận Cần Biết


Phương pháp 2 : cách thức phân tích

Thực chất là thay đổi phương trình về dạng:

g1 (x1, x2,…., xn­) h (x1, x2,…., xn­) = a

Ví dụ 3: search nghiệm nguyên của phương trình

x4 + 4x3+ 6x2+ 4x = y2

Hướng dẫn: Ta có: x4 + 4x3+ 6x2+ 4x = y2 ⇔ x4 +4x3+6x2+4x +1- y2=1

⇔ (x+1)4 – y2 = 1 ⇔ <(x+1)2 –y> <(x+1)2+y>= 1

⇔ $ displaystyle left{ eginarrayl(x+1)_^2-y=1\(x+1)_^2+y=1endarray ight.$ hoặc $ displaystyle left{ eginarrayl(x+1)_^2-y=-1\(x+1)_^2+y=-1endarray ight.$

$ displaystyle left< eginarrayl1+y=1-y\-1+y=-1-yendarray ight.$

⇒ y = 0 ⇒ (x+1)2 = 1 ⇔ x+1 = ±1 ⇒ x = 0 hoặc x = -2

Vậy ( x, y ) = ( 0, 0 ); ( – 2, 0 )

III. Phương thức 3 : cách thức cực hạn

Sử dụng so với 1 số việc vai trò của những ẩn đồng đẳng như nhau:

Ví dụ 4: tra cứu nghiệm nguyên dương của phương trình:

5 ( x + y + z + t ) + 10 = 2 xyzt

hướng dẫn:

Ta đưa sử x ≥ y ≥ z ≥ t ≥ 1

Ta có: 5 ( x + y + z + t ) + 10 = 2 xyzt

*
*
*
*
*
*
*

⇒ (x- n) (x+ n) = 4 ⇒ x – n = x + n = ± 2 ⇒ x = ± 2

Vậy phương trình có nghiệm nguyên

(x, y) = (2; -5); (-2, 3)

Ví dụ 15: tìm nghiệm nguyên của phương trình

x2 – (y+5)x + 5y + 2 = 0

Hướng dẫn:

Ta có x2 – (y+5)x + 5y + 2 = 0 coi y là tham số ta bao gồm phương trình bậc 2 ẩn x. Trả sử phương trình bậc 2 có 2 nghiệm x1, x2

Ta có: $ displaystyle left{ eginarraylx_1+x_2=y+5\x_1x_2=5y+2endarray ight.$

⇒ $ displaystyle left{ eginarrayl5x_1+5x_2=5y+25\x_1x_2=5y+2endarray ight.$

⇒ 5 x1 + 5x2 – x1x2 = 23

⇔ (x1 -5) (x2 -5) = 2 mà lại 2 = 1.2 = (-1)(-2)

⇒ x1 + x2 = 13 hoặc x1 + x2 = 7 ⇒ y = 8 hoặc y = 2

thay vào phương trình ta kiếm được các cặp số

(x,y ) = (7, 8); (6, 8); (4, 2); (3, 2); là nghiệm của phương trình

X. Phương pháp 10 : cần sử dụng bất đẳng thức

Ví dụ 16: tra cứu nghiệm nguyên của phương trình

x2 –xy + y2 = 3

hướng dẫn:

Ta bao gồm x2 –xy + y2 = 3 ⇔ (x- $ displaystyle fracy2$)2 = 3 – $ displaystyle frac3y_^24$

Ta thấy (x- $ displaystyle fracy2$)2 = 3 – $ displaystyle frac3y_^24$ ≥ 0